summary: PSU LOVE: Long-term simulations of Antarctic ice sheet evolution can help us better understand its climatic drivers and constrain past southern hemisphere ice volume. So far, such long simulations have used proxy-based parameterizations of climatic drivers, presuming that external forcings are synchronous and spatially uniform. To improve on this, we use a transient, three-dimensional climate simulation over the last eight glacial cycles to drive an Antarctic ice sheet model. For the climate simulation, we use the intermediate complexity Earth system model LOVECLIM, which was forced with time-evolving orbital parameters, greenhouse gas concentrations, and northern hemisphere ice sheet volume. The ice sheet simulation was performed with the Penn State University Ice Sheet Model (PSU-ISM).
summary: PSU LOVE: Long-term simulations of Antarctic ice sheet evolution can help us better understand its climatic drivers and constrain past southern hemisphere ice volume. So far, such long simulations have used proxy-based parameterizations of climatic drivers, presuming that external forcings are synchronous and spatially uniform. To improve on this, we use a transient, three-dimensional climate simulation over the last eight glacial cycles to drive an Antarctic ice sheet model. For the climate simulation, we use the intermediate complexity Earth system model LOVECLIM, which was forced with time-evolving orbital parameters, greenhouse gas concentrations, and northern hemisphere ice sheet volume. The ice sheet simulation was performed with the Penn State University Ice Sheet Model (PSU-ISM).